文件编号: DDS-13-002

DRV050-CV-R03 型驱动板说明书 Ver 1.0

适用产品型号:

SVGA050SC-彩色

SVGA050SW-单色白光

SVGA050SG-单色绿光

云南北方奥雷德光电科技股份有限公司 2013年5月10日

版本发布记录

版本号	修订日期	页码	内容
Ver 1.0	2013-5-10		初始发布版本.

DRV050-CV-R03 型驱动板说明书

一、特征

- 多格式复合视频输入(缺省为 PAL)
- 低功耗
- 工业级温度工作范围(-40℃~65℃)
- 宽输入电压范围(5V~17V)
- 灵活的可配置性

二、概述

DRV050-CV-R03是SVGA050微型OLED显示器模拟复合视频输入驱动板,采用超低功耗解码器,可将多种模拟复合视频转换为ITU-RBT.656/8Bit 4:2:2数字视频信号。具有视频格式自动检测、自动增益控制等特性。默认为PAL输入,输出分辨率为768×576,支持单色或彩色信号。

驱动板外形及尺寸设计,确保了安装的 SVGA050显示区域中心与驱动板中心重合,便于光 学系统设计和装配。

驱动板具备6个I/O口和1个CMOS标准串行通信端口,允许在线或预配置视频信号的亮度、对比度、色饱和度,以及SVGA050显示器的亮度、Gamma校正、显示方向及温度补偿等。

驱动板采用高效率的DC-DC稳压器件,提供5~17V宽输入电压。

三、电源及功耗

输入电源	DC 5~17V
典型功耗	500mW(含显示器)

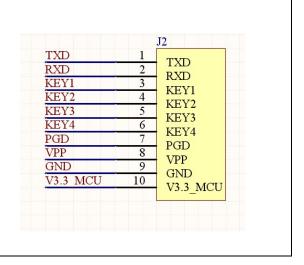
注: 典型功耗是指在输入电源为 5V、单色白光显示器亮度为 160cd/ m^2 、全彩色显示器亮度为 100cd/ m^2 条件下的测试结果,测试环境温度 25 \mathbb{C} ± 5 \mathbb{C} 。

四、输入视频信号

视频信号	复合视频
电平范围	0~1.0Vpp
输入阻抗	75Ω
输出 (PAL)	768×576

五、通信及控制接口(3.3V CMOS 电平标准)

数字输入接口定义: (内部上拉,低电平有效)	默认功能
KEY1	信号对比度减小
KEY2	显示器亮度增加
KEY3	显示器亮度减小
KEY4	信号对比度增加
RESET	硬件复位
通信接口	RS232 (3.3V)
波特率	9600bps
奇偶校验	无
数据位	8
停止位	1


六、机械尺寸

尺寸 (L×W)	29mm×29mm
显示器中心与驯	区动 PCB 中心一致

七、接口及引脚定义

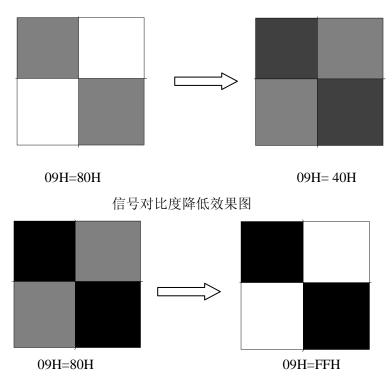
序号	名称	功能	电平			
1	TxD	通信发送端	0/3.3V			J1
2	RxD	通信接收端	0/3.3V	TXD RXD	1 2	TXD
3	KEY1	信号对比度减小	0/3.3V	KEY1	3	RXD KEY1
4	CV-	视频信号地	0V	CV- CV+	4 5	GND CV+
5	CV+	视频信号输入	0~1.0 Vpp	GND VIN	6 7	GND
6	GND	电源地	0V	KEY2 KEY3	8	VIN KEY2
7	Vin	电源输入	5∼17V	KEY4	10	KEY3 KEY4
8	KEY2	显示器亮度增加	0/3.3V			
9	KEY3	显示器亮度减小	0/3.3V			
10	KEY4	信号对比度增加	0/3.3V			

序号	名称	功能	电平	
1	TxD	通信发送端	0/3.3V	
2	RxD	通信接收端	0/3.3V	
3	KEY1	信号对比度减小	0/3.3V	
4	KEY2	显示器亮度增加	0/3.3V	
5	KEY3	显示器亮度减小	0/3.3V	
6	KEY4	信号对比度增加	0/3.3V	
7	PGD	预置键	0/3.3V	
8	Vpp	烧录电压	0/3.3V	
9	GND	按键地	0V	
10	V2.2 MCII	3.3V 输出电源	2 2 1/	
10	V3.3_MCU	(负载能力<50mA)	3.3V	

- 注: 1.连接器上写有1的位置为第1引脚,写有MXJ的位置为第10引脚,连接器型号为53047-1010.
 - 2. J1默认连接器为10Pin,可根据客户需要选择连接器Pin数;
 - 3. J2连机器未打件,可根据客户需要打件。

八、 按键功能

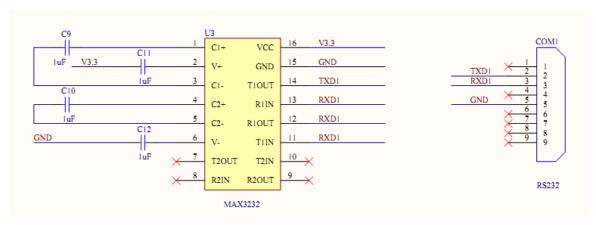
- KEY2: 低电平脉冲信号(>20ms)有效。当KEY2引脚为低电平时,减小显示器19H寄存器值,调整范围为±28h,使显示器屏幕亮度从暗(Reg(19H)+28H)到亮(Reg(19H)-28H)循环。
- KEY3: 低电平脉冲信号(>20ms)有效。当KEY3引脚为低电平时,增加显示器19H寄存器值,调整范围为±28h,使显示器屏幕亮度从亮(Reg(19H)-28H)到暗(Reg(19H)+28H)循环。
- KEY4: 低电平脉冲信号(>20ms)有效。当KEY4引脚为低电平时,增加显示器09h寄存器值,整


OLGHTEK

范围±20h。对应增加视频输入信号的增益(对比度)。算法为:

 $VIDOUT = VIDIN \times (Reg(09h) / 80h)$

Reg(09h)	效果
00h	信号全为0(黑屏)
80h	信号无变化
FFh	两倍信号增益(对比度)


● KEY1: 低电平脉冲信号(>20ms)有效。当KEY1引脚为低电平时,减小显示器09h寄存器值,整 范围±20h。对应增加视频输入信号的增益(对比度)。

信号对比度增加效果图

九、通信协议

通信功能可以读取和修改驱动板的EEPROM,可对显示器和解码器的使用状态进行修改和控制。连接方式如下:

4

Yunnan North OLEiD Opto-Electronic Technology Co.,Ltd.
Tel: 86-871-65105538 Fax: 86-871-65105207
http://www.olightek.com

注:驱动板通信接口为CMOS 3.3V标准,不能直接连接计算机标准串口。

通信规则及指令如下:

● 每条指令必须在600ms内发送完毕,否则会收到指令超时错误代码。

常用指令如下:

(1) 读显示器亮度 02 11 03 19 01 03,

串口回复: 02 11 03 06 XX 03 (其中 XX 为当前显示器的亮度值)

(2) 读显示器对比度: 02 11 03 09 01 03

串口回复: 02 11 03 06 XX 03 (其中 XX 为当前显示器的对比度值)

(3) 修改对比度: 02 21 03 09 XX 03 (XX 为客户需要设置值, XX 范围为 00~FF)

(4) 修改显示器显示方向

正常显示 02 21 03 10 00 03 上下镜像 02 21 03 10 02 03 左右镜像 02 21 03 10 01 03 上下左右都镜像 02 21 03 10 03 03

- 注: 以上(3)、(4)对显示器的修改如需固化,请将指令中21改成23,并修改相应的校验和,发送指令后重新上电即可。【具体请参考EEPROM寄存器分配说明】
- (5) 修改显示器亮度 02 24 03 ?? XX 03

(XX 为客户需要设置值, XX 范围为 00~FF, 其中 00 为最暗,FF 为最亮。??为任意值)注:此指令修改的亮度不仅当前可见效果,而且可以自动保存到 EEPROM 中固化。

(6) 打开温补 02 43 03 01 00 03 关闭温补 02 43 03 00 00 03

注: 此指令只在一次上电过程中有效;如需固化温补设置,修改 EEPROM 的 DEh 寄存器和对应的校验和。【具体请参考 EEPROM 寄存器分配说明】

(7) 恢复出厂默认设置 02 80 03 00 00 03

(8) 软件复位 02 55 03 00 00 03

● 通信指令助记符定义:

助记符	代码	含义		错误代	含义	
(16 进制)				助记符	(16 进制)	
STX	02h	起始符		cErr_Head	F0	起始符错误
ETX	03h	结束符		cErr_End	F1	结束符错误
ACK	06h	指令响应成功		cErr_CMD	F2	命令字错误
NAK	07h	指令响应失败		cErr_DataLen	F3	数据长度错误
	00h	读软件版本、驱动板 以及烧录信息		cErr_Frame	F4	通信帧错误
	11h	读显示器		cErr_FIF0	F5	FIF0 溢出错误
	12h	读视频解码器		cErr_RxERR	F6	指令解码错误
	13h	读 EEPROM		cErr_TimerOut	F7	指令超时错误
	21h	写显示器		cErr_Waiting	F8	指令解析等待
	22h	写视频解码器		cErr_NoCMD	FF	未知指令
CLED	23h	写 EEPROM				
CMD	24h	写显示器亮度				
	30h	PAL 切换为 NTSC 制				
	31h	NTSC 制切换为 PAL				
	41h	复位显示器				
	42h	复位视频解码器				
	43h	打开/关闭温度补偿				
	55h	软件复位				
	80h	恢复出厂设置				

● 指令格式定义

每条指令由:起始符、命令字、数据长度、数据、结束符五部分组成,除数据部分可由多个字节构成外,其它部分均为单字节编码。驱动板接收缓冲为64字节,因此每条指令总长度不得超过64字节。其中:

数据长度 = 数据总字节数+1

指令总长度 = 数据长度+3

发送指令和接收到的响应格式定义如下:

发送指令:	字节数	1Byte	1Byte	1Byte	nByte	1Byte
	助记符	起始符	命令字	数据长度	数据	结束符
					→ 数排	居长度

Yunnan North OLEiD Opto-Electronic Technology Co.,Ltd.
Tel: 86-871-65105538 Fax: 86-871-65105207
http://www.olightek.com

响应:

字节数	1Byte	1Byte	1Byte	1Byte	nByte	1Byte
助记符	起始符	命令字	数据长度	响应标记	数据	结束符

_______ 数据长度

● 读指令(固定由6个字节构成):

STX+读命令字+指令长度+读地址+读长度+ETX

字节数	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte
助记符	STX	CMD	Length	Add0	ReadLen	ETX
取值(16进制)	02	00/11/12/13	03	00~FF	01~FF	03

示例1,读显示器寄存器00h~0Fh指令: 02 11 03 00 10 03

示例2, 读软件版本信息指令: 02 00 03 00 00 03

● 写指令(至少6个字节、最多64个字节):

STX+写命令字+指令长度+地址0+数据0+······+地址n+数据n+ETX

ĺ	字节数	1Byte	1Byte	1Byte	1Byte	1Byte	 1Byte	1Byte	1Byte
	助记符	STX	CMD	Length	Add0	Data0	 Addn	Datan	ETX
	取值(16进制)	02	21/22/23	03~FF	00~FF	00~FF	 00~FF	00~FF	03

示例,写显示器寄存器(01h)=41h,(19h)=A0h指令: 02 21 05 01 41 19 A0 03

读指令成功响应(至少6个字节、最多305个字节):

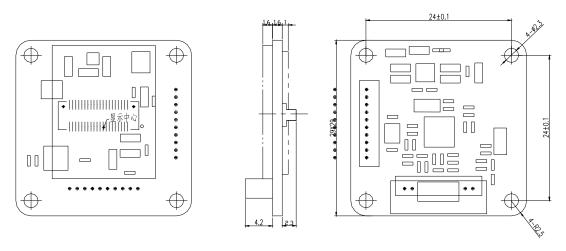
STX+命令字+指令长度+ACK+数据0+·····+数据n+ETX

字节数	1Byte	1Byte	1Byte	1Byte	1Byte	 1Byte	1Byte
助记符	STX	CMD	Length	ACK	Data0	 Datan	ETX
取值(16进制)	02	00/11/12/13	03~FF	06	00~FF	 00~FF	03

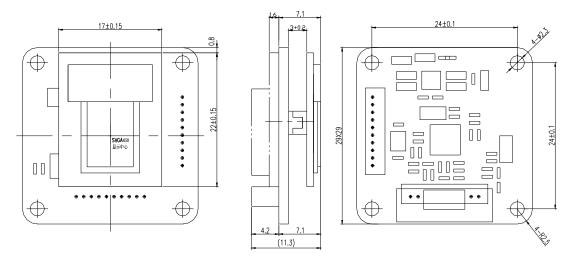
写指令成功响应(固定由5个字节构成):

STX+命令字+02h+ACK+ETX

字节数	节数 1Byte		1Byte	1Byte	1Byte	
助记符	STX	CMD	Length	ACK	ETX	
取值(16进制)	02	21/22/23	02	06	03	


指令失败响应(固定由5个字节构成):

STX+命令字+02h+ACK+ETX


字节数	字节数 1Byte 助记符 STX		1Byte	1Byte	1Byte ETX	
助记符			Length	NAK		
取值(16进制)	02	21/22/23	02	06	03	

OLGHTEK

十、驱动板机械结构图

机械结构尺寸图

SVGA050 OLED 与驱动板安装图